Search results for "density [saturation]"

showing 10 items of 286 documents

Ab initio modeling of oxygen impurity atom incorporation into uranium mononitride surface and subsurface vacancies

2011

The incorporation of oxygen atoms has been simulated into either nitrogen or uranium vacancy at the UN(001) surface, sub-surface or central layers. For calculations on the corresponding slab models both the relativistic pseudopotentials and the method of projector augmented-waves (PAW) as implemented in the VASP computer code have been used. The energies of O atom incorporation and solution within the defective UN surface have been calculated and discussed. For different configurations of oxygen ions at vacancies within the UN(001) slab, the calculated density of states and electronic charge re-distribution was analyzed. Considerable energetic preference of O atom incorporation into the N-v…

Condensed Matter - Materials ScienceNuclear and High Energy PhysicsChemistryAb initiochemistry.chemical_elementMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesUraniumComputational Physics (physics.comp-ph)Elementary chargeNitrogenCondensed Matter::Materials ScienceNuclear Energy and EngineeringVacancy defectAtomDensity of statesSlabPhysics::Atomic and Molecular ClustersGeneral Materials ScienceAtomic physicsPhysics - Computational Physics
researchProduct

Optimizing density-functional simulations for two-dimensional metals

2022

Unlike covalent two-dimensional (2D) materials like graphene, 2D metals have non-layered structures due to their non-directional, metallic bonding. While experiments on 2D metals are still scarce and challenging, density-functional theory (DFT) provides an ideal approach to predict their basic properties and assist in their design. However, DFT methods have been rarely benchmarked against metallic bonding at low dimensions. Therefore, to identify optimal DFT attributes for a desired accuracy, we systematically benchmark exchange-correlation functionals from LDA to hybrids and basis sets from plane waves to local basis with different pseudopotentials. With 1D chain, 2D honeycomb, 2D square, …

Condensed Matter - Materials Sciencekemialliset sidoksetPhysics and Astronomy (miscellaneous)tiheyschemical bondingdensity of statesMaterials Science (cond-mat.mtrl-sci)FOS: Physical scienceselasticityGeneral Materials SciencekimmoisuusPhysical Review Materials
researchProduct

Quantum Mechanical Modelling of Pure and Defective KNbO3 Perovskites

2000

Ab initio electronic structure calculations using the density-functional theory (DFT) are performed for KNbO3 with and without defects. Ferroelectric distortive transitions involve very small changes in energies and are therefore sensitive to DFT-approximations. This is discussed by comparing results obtained with the local density approximation (LDA) to those where generalized gradient approximations (GGA) are used. The results of ab initio calculations for F-type centers and bound hole polarons are compared to those obtained by a semiempirical method of the Intermediate Neglect of the Differential Overlap (INDO), based on the HartreeFock formalism. Supercells with 40 and 320 atoms were us…

Condensed Matter::Materials ScienceCondensed matter physicsAb initio quantum chemistry methodsPhysics::Atomic and Molecular ClustersAb initioDensity functional theoryElectronic structureLocal-density approximationPolaronMolecular physicsFerroelectricityQuantumMathematics
researchProduct

First-Principles Simulation of Substitutional Defects in Perovskites

2000

The results of supercell calculations of electronic structure and related properties of substitutional impurities in perovskite oxides KNbO3 and KTaO3 are discussed. For Fe impurities in KNbO3, the results obtained in the local density approximation (LDA) and in the LDA+U approach (that allows an ad hoc treatment of nonlocality in exchange-correlation) are compared, and different impurity charge configurations are discussed. The study of off-centre Li defects in incipient ferroelectric KTaO3 have been done by the appropriately parametrized Intermediate Neglect of Differential Overlap (INDO) method. The interaction energies of two off-centre impurities in different relative configurations ar…

Condensed Matter::Materials ScienceQuantum nonlocalityMaterials scienceCondensed matter physicsImpurityCondensed Matter::SuperconductivitySupercell (crystal)Condensed Matter::Strongly Correlated ElectronsCharge (physics)Electronic structureLocal-density approximationFerroelectricityPerovskite (structure)
researchProduct

New Materials with High Spin Polarization Investigated by X-Ray Magnetic Circular Dichroism

2013

We investigate element-specific spin and orbital magnetic moments of polycrystalline bulk Heusler alloys that are predicted to be half-metallic with composition Co2YZ (Y = Ti, Cr, Mn, Fe and Z = Al, Ga, Si, Ge, Sn, Sb) using magnetic circular dichroism in X-ray absorption spectroscopy (XAS/XMCD). In addition to stoichiometric compounds we also investigate composition series with partly replaced elements on the Y-site (Co2Fe x Cr1−x Si, Co2Mn x Ti1−x Si and Co2Mn x Ti1−x Ge) and on the Z-site (Co2MnGa1−x Ge x ) promising a tailoring of the Fermi level with respect to the minority band gap. We compare experimental results with theoretical predictions elucidating the influence of local disorde…

Condensed Matter::Materials Sciencesymbols.namesakeMaterials scienceSpin polarizationFerromagnetismMagnetic momentX-ray magnetic circular dichroismCondensed matter physicsMagnetic circular dichroismBand gapFermi levelsymbolsLocal-density approximation
researchProduct

Realistic investigations of correlated electron systems with LDA + DMFT

2006

Conventional band structure calculations in the local density approximation (LDA) [1–3] are highly successful for many materials, but miss important aspects of the physics and energetics of strongly correlated electron systems, such as transition metal oxides and f-electron systems displaying, e.g., Mott insulating and heavy quasiparticle behavior. In this respect, the LDA + DMFT approach which merges LDA with a modern many-body approach, the dynamical mean-field theory (DMFT), has proved to be a breakthrough for the realistic modeling of correlated materials. Depending on the strength of the electronic correlation, a LDA + DMFT calculation yields the weakly correlated LDA results, a strong…

Condensed Matter::Quantum GasesCondensed matter physicsHubbard modelElectronic correlationChemistryMott insulatorQuantum Monte CarloCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuasiparticleCondensed Matter::Strongly Correlated ElectronsStrongly correlated materialddc:530Metal–insulator transitionLocal-density approximation
researchProduct

Superlight small bipolarons from realistic long-range Coulomb and Fröhlich interactions

2011

We report analytical and numerical results on the two-particle states of the polaronic t-Jp model derived recently with realistic Coulomb and electron-phonon (Frohlich) interactions in doped polar insulators. Eigenstates and eigenvalues are calculated for two different geometries. Our results show that the ground state is a bipolaronic singlet, made up of two polarons. The bipolaron size increases with increasing ratio of the polaron hopping integral t to the exchange interaction Jp but remains small compared to the system size in the whole range 0<t/Jp<1. Furthermore, the model exhibits a phase transition to a superconducting state with a critical temperature well in excess of 100K. In the…

Condensed Matter::Quantum GasesPhysicsBipolaronCondensed matter physicsCondensed Matter - SuperconductivityExchange interactionCharge (physics)Condensed Matter PhysicsPolaronElectronic Optical and Magnetic MaterialsCondensed Matter - Strongly Correlated ElectronsDensity of statesCoulombCondensed Matter::Strongly Correlated ElectronsGround stateSpin-½Physical Review B
researchProduct

The electron gas with short coherence length pairs: how to approach the stronger coupling limit?

2001

Abstract The attractive Hubbard model is investigated in 2D using a T -matrix approach. In a self-consistent calculation pairs as infinite lifetime Bosons only exist in the atomic limit and therefore a Fermi surface can be investigated also in the stronger coupling regime. A heavy quasiparticle peak with a weak dispersion crosses the Fermi surface at k F whereas light, single particle excitations do only exist far away from the Fermi surface. At low temperatures there seem to exist different self-consistent solutions. In one of them a pseudogap opens even in the integrated density of states. In the present work accurate k -dependent and k -integrated spectral quantities for a 2D finite latt…

Condensed Matter::Quantum GasesPhysicsHubbard modelCondensed matter physicsEnergy Engineering and Power TechnologyFermi surfaceCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCoherence lengthQuasiparticleDensity of statesCondensed Matter::Strongly Correlated ElectronsElectrical and Electronic EngineeringFermi gasPseudogapBosonPhysica C: Superconductivity
researchProduct

Quantum critical point in a periodic Anderson model

2000

We investigate the symmetric Periodic Anderson Model (PAM) on a three-dimensional cubic lattice with nearest-neighbor hopping and hybridization matrix elements. Using Gutzwiller's variational method and the Hubbard-III approximation (which corresponds to the exact solution of an appropriate Falicov-Kimball model in infinite dimensions) we demonstrate the existence of a quantum critical point at zero temperature. Below a critical value $V_c$ of the hybridization (or above a critical interaction $U_c$) the system is an {\em insulator} in Gutzwiller's and a {\em semi-metal} in Hubbard's approach, whereas above $V_c$ (below $U_c$) it behaves like a metal in both approximations. These prediction…

Condensed Matter::Quantum GasesPhysicsStrongly Correlated Electrons (cond-mat.str-el)Quantum Monte CarloFOS: Physical sciencesCritical value01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsExact solutions in general relativityVariational methodQuantum critical pointQuantum mechanics0103 physical sciencesDensity of statesCondensed Matter::Strongly Correlated ElectronsStrongly correlated material010306 general physicsAnderson impurity modelPhysical Review B
researchProduct

Superfluidity of fermionic pairs in a harmonic trap. Comparative studies: Local Density Approximation and Bogoliubov-de Gennes solutions

2020

Abstract Experiments with ultracold gases on the lattice give the opportunity to realize superfluid fermionic mixtures in a trapping potential. The external trap modifies the chemical potential locally. Moreover, this trap also introduces non-homogeneity in the superconducting order parameter. There are, among other approaches, two methods which can be used to describe the system of two-component mixtures loaded into an optical lattice: the Local Density Approximation (LDA) and the self-consistent Bogoliubov–de Gennes equations. Here, we compare results obtained within these two methods. We conclude that the results can be distinguishable only in the case of a small value of the pairing int…

Condensed Matter::Quantum GasesPhysicsSuperfluiditySuperconductivityOptical latticeLattice (order)Quantum mechanicsPairingGeneral Physics and AstronomyTrappingLocal-density approximationJournal of Physics Communications
researchProduct